
MASTERS THESIS

Addressing Class-Imbalance using Generative

Adversarial Networks

by
Aatif Nisar Dar

Under the Supervision of
Dr. Reshma Rastogi

Submitted in partial fulfillment of the requirements
for the award of the degree of

Master of Science in Computer Science

to the

DEPARTMENT OF COMPUTER SCIENCE
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
SOUTH ASIAN UNIVERSITY, NEW DELHI - 110021, INDIA

May, 2022

MASTERS THESIS

Addressing Class-Imbalance using Generative

Adversarial Networks

by

Aatif Nisar Dar
SAU/CS(M)/2020/01

Under the Supervision of

Dr. Reshma Rastogi

Submitted in partial fulfillment of the requirements for the award of the degree of

Master of Science in Computer Science

to the

Department of Computer Science
Faculty of Mathematics and Computer Science

South Asian University, New Delhi - 110021, India
May, 2022

© South Asian University, 2022

All Rights Reserved.

Declaration

I hereby declare that the thesis entitled "Addressing Class-Imbalance using

Generative Adversarial Networks" being submitted to the Department of

Computer Science, Faculty of Mathematics and Computer Science, South Asian

University, New Delhi in partial fulfillment of the requirements for the award of the

degree of Master of Science in Computer Science contains the original work

carried out by me under the supervision of Dr. Reshma Rastogi. The research work

reported in this thesis is original and has not been submitted either in part or full to

any university or institution for the award of any degree or diploma.

Name: Aatif Nisar Dar

Enrollment No: SAU/CS(M)/2020/01

iv

Abstract

A common problem while training deep learning models is the lack of labeled training

data. Often real-life datasets such as multilabel datasets suffer from class Imbalance

problem, which is inescapable. The limited minority data may not be sufficient for

efficient learning and often can cause the networks to overfit. This dissertation

considers the potential application of Generative Adversarial Networks (GANs) to

restore balance in imbalanced multilabel datasets. We will generate new data for

the minority labels and use multilabel learning algorithms to handle multilabel data.

We compare our model with MLSMOTE to validate the effectiveness of our model.

Experiments over six real datasets using five different multilabel learning algorithms

and seven evaluation measures show that our strategy of resampling the multilabel

data constantly outperforms MLSMOTE. Results indicate that imbalance in multilabel

datasets is reduced in a classifier-independent way; that is, the classifier should have a

deplorable influence on the effectiveness of the resampling strategy. While generating

new samples from GAN architecture, we use representative class samples to represent

each class distribution which further reduces the training time.

v

Acknowledgement

I would first like to thank my supervisor, Dr. Reshma Rastogi, for her endless

optimism concerning this work, enthusiasm, and encouragement. This research would

not have been possible without her constant support and the interesting and insightful

discussions I had with her. Her way of guidance always encouraged me to think

in-depth about my research topic. Through our meetings, I got a space to think,

understand and argue my point of view, and her encouragement kept me motivated

throughout the process. From her, I have learned to think critically, select problems,

solve them, and present their solutions. I admire all her contributions of time and

ideas to make my research work more productive and stimulating. Her enthusiasm for

her research was contagious and motivational for me, even during challenging times

in the M.Sc. pursuit. I would also like to thank all the faculty members, my seniors,

and peers for creating an environment of learning which is crucial for any research.

The standards set by the Faculty of Computer Science members, both professors and

students, motivated me to work harder. Lastly, I would like to thank my lab seniors,

Mr. Sanjay Kumar and Mr. Sambhav Jain, for their continuous support and guidance.

Aatif Nisar Dar

SAU/CS(M)/2020/01

May, 2022

vi

CERTIFICATE

This is to certify that the thesis entitled "Addressing Class-Imbalance

using Generative Adversarial Networks" submitted by Aatif Nisar Dar to the

Department of Computer Science, Faculty of Mathematics and Computer Science,

South Asian University, New Delhi in partial fulfilment of the requirements for the

award of the degree of Master of Science in Computer Science, is a record of the

bonafide research work carried out by him under my supervision and guidance. The

results contained in this thesis have not been submitted in part or full to any other

university or institute for the award of any degree or diploma.

Dr. Reshma Rastogi

(Supervisor)

Department of Computer Science

Faculty of Mathematics and Computer Science.

South Asian University, Delhi, India.

vii

Contents

Declaration iv

Abstract v

Acknowledgement vi

1 Introduction 1

1.1 Overview . 1

1.2 Dissertation Outline . 3

2 Related Work 4

2.1 Generative Adversarial Networks . 4

2.2 Data Augmentation . 6

2.3 Imbalance in Multilabel Classification 6

3 Deep Convolutional Generative Adversarial Networks (DCGAN) 8

3.1 Improved Techniques for Training GANs 10

3.2 DCGAN (Deep Convolutional Generative Adversarial Network) 11

3.2.1 StyleGAN . 13

viii

CONTENTS

3.2.2 SMIT (Stochastic Multi-Label Image-to-Image Translation) . . . 14

3.3 SAGAN (Self Attention Generative Adversarial Network) 15

3.4 Partial Label Learning . 18

3.4.1 PLLGAN (Partial Label Learning via GANs) 19

3.4.2 PMLGAN (Partial Multi-Label Learning via GANs) 19

4 MLGAN 22

4.1 Measuring Imbalance . 23

4.2 Generative Adversarial Network (GAN) Architecture 24

4.3 Proposed Approach . 25

5 Experimental Setup and Results 28

5.1 Experimental Setup . 28

5.1.1 Datasets . 28

5.1.2 Classifiers . 30

5.1.3 Evaluation Metrics . 32

5.2 Experimental Results . 34

5.2.1 Effect of K in MLSMOTE . 40

6 Conclusion and Future Works 41

References 42

ix

Chapter 1

Introduction

1.1 Overview

In traditional classification, a dataset is composed of a set of input features and

corresponding output label or class. In multilabel learning, an instance can belong

to more than one label, and the total number of different labels can be huge. For

example, In a movie recommendation system, a movie can belong to both horror and

action at the same time. Multilabel data is helpful to process many practical problems

effectively as it inherits rich semantics. Let X = Rd denote the domain of input feature

space and Y = {l1, ..., lq} denote a finite set of labels. Let D = {(xi, yi), 1 ≤ i ≤ n}

be a multi-label training set containing n instances. Here, xi ∈ X is the feature

vector and yi ∈ Y is the label vector. yij is the jth element of yi and yij = 0 or 1

denoting the absence or presence of lj with the ith instance. The goal of multilabel

learning is to learn a mapping function f : X → Yq, which is able to correctly predict

the label vector of unseen instances. Multilabel learning tasks are ubiquitous in real-

world problems and have gained a lot of attention in a variety of domains such as

images, text, audio [1]. The main focus of multilabel learning in its early stage

was on text categorization [2]. Recently, multilabel learning has attracted a lot of

attention from machine learning and related communities. Multilabel datasets are

being widely applied to a lot of real-world problems like images[3], bioinformatics[4],

1

1.1 OVERVIEW

tag recommendation[5], etc. Recently, much research has been done on multilabel

learning, and class imbalance has been recognized as a critical challenge. To overcome

this class imbalance problem, research has primarily focused on either adding or

removing instances [6]. Oversampling approaches based on cloning have also been

proposed in [6, 7]. Charte et al. [8] proposed MLSMOTE that generates new instances

by picking up random samples among the nearest neighbors of one another.

Deep Learning models demand high-quality datasets to train on the algorithm.

By high-quality, we not only mean that the data should be extensive, but it should

cover each class almost equally. The real-world datasets suffer from several forms of

imbalance which is a challenge in Deep Learning. The limited minority data may

not be sufficient and often cause the networks to overfit. In such cases, it is possible

to create new entries in the minority data, which increases the representation of the

minority class and helps to avoid overfitting.

In this dissertation, Generative Adversarial Network (GAN) [9] is used to create

synthetic samples for the minority class to overcome the class Imbalance problem.

GAN employs two Neural Networks; Generator and the Discriminator. We will

investigate whether incorporating GANs in multilabel datasets as a data augmentation

technique can improve the performance of our model. Also, we will check whether we

are able to resample the multilabel dataset in a classifier-independent way. We will

use the architecture of CTGAN (Conditional Tabular Generative Adversarial Network)

[10] in this study. CTGAN model employs 1) Conditional Generator, so that Generator

can generate synthetic data conditioned on discrete columns. 2) Training-by-sample

technique helps the model explore all possible values evenly by properly sampling

the conditional vector and training data. We check imbalance in all the labels using

IRLbl (Imbalance ratio per label) [11, 12]. The labels where there is an imbalance are

called minority labels, and those labels with no imbalance are called majority labels.

The main objective of this dissertation is to produce synthetic data associated with

minority labels. The Generator generates new data for the minority labels, and the

multilabel learning problem is tackled by a simple categorization of multilabel learning

2

1.2 DISSERTATION OUTLINE

algorithms[13, 14, 15, 16, 17] discussed later in this dissertation. CVIR (Coefficient

of variation of IRLbl)[12] will be used to know the overall imbalance in the multilabel

dataset.

Multilabel dataset is partitioned into training set Ttrain and test set Ttest using k-

fold cross-validation technique, where the value of k is set to 5. Imbalance is checked

on Ttrain, and the required samples are synthesized and concatenated with Ttrain.

After training the classifier on Ttrain, we evaluate the efficacy of our model on Ttest.

We will compare the results obtained from our technique with the results obtained

from MLSMOTE [8] method. Experiments over six real datasets using five different

multilabel learning algorithms and seven evaluation measures[18, 19] show that our

strategy of resampling the multilabel data constantly outperforms MLSMOTE.

1.2 Dissertation Outline

The rest of this dissertation is organized as follows. Related work on data

augmentation in multilabel learning and generative adversarial network is reviewed

in section 2. In section 3, DCGAN (Deep Convolutional Generative Adversarial

Networks) will be discussed. In section 4, we will discuss our approach; that is,

MLGAN (Multilabel Generative Adversarial Networks), followed by experimental

setup and experimental results in section 5. Conclusion and future work regarding

our study will be discussed in 6.

Related work2

DCGAN (Deep Convolutional Generative Adversarial Network)3

Multilabel Generative Adversarial Networks (MLGAN) 4

Experimental setup and Experimental results 5

Conclusion and Future Work 6

3

Chapter 2

Related Work

2.1 Generative Adversarial Networks

Goodfellow et al. [9] introduced Generative Adversarial Networks (GANs). GANs are

a type of generative model pitted against an adversary. In GANs, we simultaneously

train two models: Generator and Discriminator. The Generator and the Discriminator

are deep Neural Networks competing against each other. A generative model G to be

trained on training data X sampled from true distribution D is the one which, given

some standard random distribution z, produces a distribution D′ close to D according

to some closeness metric. Generator creates new instances pg(z) by capturing the

data distribution. At the same time, the Discriminator estimates the probability

that a sample came from the training data pdata(X) rather than Generator. Both

Generator and Discriminator are trained using the backpropagation. After several

steps of training, Generator and Discriminator will reach the optimal point where

pg(z) = pdata(X). At this optimal condition, the Discriminator will not differentiate

whether the sample comes from the original or generated distribution.

GANs have gained a lot of attention over recent years. Romero et al. [20]

introduced an image-to-image translation technique SMIT (Stochastic Multi-Label

Image-to-Image Translation). In SMIT, using a single Generator, authors propose

4

2.1 GENERATIVE ADVERSARIAL NETWORKS

a joint framework of multimodality, unpaired datasets, and multiple attributes to

conditionally produce countless and fake images, holding the underlying characteristic

of the source image. Cao et al. [21] proposed Human Pose estimation using SAGAN

(Self-Attention GAN). The Self-Attention module in SAGAN helps in capturing long-

range dependencies. Park et al. [22] introduced table-GAN to synthesize tabular data

using GANs. A classifier neural network was added apart from the Generator and

Discriminator to increase the semantic integrity. Lei Xu et al. [23] introduced TGAN

(Tabular Generative Adversarial Network). TGAN uses a Recurrent Neural network,

while table-GAN uses a convolutional network. TGAN learns the marginal distribution

of each column by minimizing KL divergence, while table-GAN minimizes the cross-

entropy loss. Lei Xu et al. [10] introduced CTGAN (Conditional Tabular Generative

Adversarial Network). In CTGAN, a mix of activation functions are used at the

output of the network, tanh and gumble softmax, to generate discrete and continuous

values. This study uses CTGAN as the base architecture to generate the samples in

multilabel datasets. Y Zhang et al.[24] introduced PLLGAN (Partial Label Learning

via Generative Adversarial Nets). PLLGAN comprises two components; 1) Generator

and 2) Discriminator. The Generator adopts the idea of CGAN (Conditional GAN).

The candidate label set (candidate to be true) is given to the Generator to generate

samples similar to the real samples. In [25], the authors introduced PMLGAN

(Partial Multilabel learning GAN). In PMLGAN, along with the Discriminator and

the Generator, a disambiguation network to identify irrelevant labels and a predictive

network to map the training instances to their disambiguated label vectors are also

employed. Cao et al. in [26] introduced Human Pose estimation using self attended

GANs. In this study, both the Discriminator and the Generator used Hourglass

networks. The Hourglass networks are fully connected with residual blocks and

convolution-deconvolution architecture. In the Generator, 4-stack hourglass networks

are used. The Generator generates heatmaps that indicate the confidence score for all

the body joint key points at every location. The Discriminator uses a 1-stack hourglass

network. It reconstructs both the predicted heatmaps and the ground truth heatmaps

and distinguishes real from fake.

5

2.2 DATA AUGMENTATION

2.2 Data Augmentation

Data augmentation was initially done for image classification tasks. Traditional data

augmentation techniques for image classification were achieved by flipping, scaling,

cropping, padding, rotation, or adding a small amount of noise to the original

image. These small mutations were applied to the machine learning tasks to increase

the training data by creating new examples. In [27], a simple yet effective data

augmentation technique for the image classification task was proposed. In this paper,

two randomly chosen examples (Xi, yi) and (Xj, yj) are picked. The new example

is randomly decided among two choices; (Xi,Xj

2
, yi) or (

Xi,Xj

2
, yj). Oversampling and

undersampling are techniques used to re-sample imbalanced class distributions. An

intelligent oversampling technique called SMOTE (Synthetic Minority Over-sampling

Technique), discussed in [28], creates new instances by interpolating new points from

existing instances via K-NN (K-Nearest Neighbors). Maayan et al. [29] introduced a

GAN-based data augmentation technique for liver lesion classification. In this paper,

the authors suggested a combination of standard image perturbation to create a larger

dataset of CT images and synthetic labeled liver lesion generation using DCGAN

(Deep Convolutional Generative Adversarial Network) from CT images. The combined

standard and synthetic augmentation are finally used to train a lesion classifier.

This improved classification performance by 7.1% specificity and 4% sensitivity when

compared using classical augmentation techniques.

2.3 Imbalance in Multilabel Classification

Multilabel datasets and classification methods have rapidly become more common in

recent years. Multilabel datasets suffer from an imbalance problem which prevents the

model from predicting the minority class and suffers from overfitting. There are two

objectives when producing synthetic data in multilabel datasets: High Data Utility

and Low Disclosure Risk [30]. Reducing disclosure risk comes at a cost in utility.

So while augmenting, a balance in trade-off between the two has to be maintained.

6

2.3 IMBALANCE IN MULTILABEL CLASSIFICATION

Much research is being done to overcome the imbalance in binary and multiclass

datasets. Handling imbalance in multilabel cases can be an issue as each instance may

be associated with multiple labels. Existing oversampling and undersampling methods

assumed an instance to be associated with a single label. Two preprocessing measures

aimed at reducing the imbalance in multilabel tasks were introduced by Charte et

al. [6]. In the Undersampling method, 25% of random samples of majority labelsets

were deleted, and in Oversampling method, 25% of random samples from minority

label sets were cloned. The proposal in [31] is an undersampling approach used to

improve the classification performance in text categorization. Du et al. [7] proposed

random undersampling and random oversampling algorithms while using methods to

divide the instances into minority and majority groups. Charte et al.[8] introduced

MLSMOTE (Multilabel Synthetic Minority Over-Sampling Technique). MLSMOTE

takes all the instances from minority labels and then picks random samples among the

nearest neighbors of each one. After selecting the neighbors, interpolation techniques

help obtain the set of features, and finally, a synthetic label set is generated for the

new instance. In this dissertation, we will compare our model with MLSMOTE. We

statistically evaluate both techniques on seven multilabel datasets.

7

Chapter 3

Deep Convolutional Generative

Adversarial Networks (DCGAN)

GANs are comprised of two neural networks, Discriminator and Generator, competing

for one against the other. A generative model that captures the data distribution and a

discriminative model estimates the probability that a sample came from the training

data rather than the generative model. Both the Generator and Discriminator are

differential modules. The Discriminator is trained precisely in the same way as a

primary classification task done by Convolution Neural Network (CNN), having two

different output nodes. While training the Generator, the Discriminator weights and

bias are kept fixed. Otherwise, the Generator would be trying to hit a moving target

and might never converge. The training procedure for the Generator is to maximize

the probability of the Discriminator making a mistake.

Discriminator in Generative Adversarial Networks has two outputs:

1. D(x) : Probability that x comes from original dataset.

2. D(G(z)) : Probability that G(z) comes from random distribution dataset.

8

Figure 3.1: Both the Neural Networks; Generator and Discriminator are Differentiable
modules.

Since GANs has two outputs, Binary Cross Entropy loss function is used.

Loss = − 1

outputsize

outputsize∑
i=1

yilogŷi + (1− yi)log(1− ŷi)

The label for the data is coming from either:

1. Original dataset: y=1 and ŷ = D(x).

2. Generator: y=0 and ŷ = D(G(z))

Substituting the value of y and ŷ in binary cross entropy loss function, we get the

loss function of Generative Adversarial Networks.

min
G

max
D

V (D,G) = Ex∼pdata(x) [log(D(x)] + Ez∼pz(z)[log(1−D(G(z)))]

The training criterion for the Discriminator, given any Generator, is to maximize

the above loss function. The role of the Generator is reverse of that of the

Discriminator, that is, to fool the Discriminator. Discriminator and Generator play

a two-player min-max game which means both are adversarial in nature. AA lot

of research by the machine learning community has been done on GANs in recent

years. The introduction of condition in CGAN (Conditional Generative Adversarial

9

3.1 IMPROVED TECHNIQUES FOR TRAINING GANS

Network)[32] allowed to control the outputs of GANs. It involves the conditional

generation of images by a generator model. Image generation can be conditioned on

a class label. E.g., we want to show only the number 8 in the MNIST dataset. A

condition of label or labels (y) is inserted into the objective function of GANs:

min
G

max
D

V (D,G) = Ex∼pdata(x) [log(D(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))]

SSGAN (Semi-supervised GAN) [33] extends CGAN to the semi-supervised context

by forcing the Discriminator to output class labels. SSGAN trains a generative model

and Discriminator on the dataset with Y classes, with Discriminator made to predict

Y+1 classes. Extra class is added to correspond to the outputs of G.

Deep Convolutional Generative Adversarial Networks (DCGAN) provided a way for

a lot of applications of GANs. In the following sections, we will discuss a few of

those applications. In section 3.1, we will discuss Improved Techniques for Training

GANs[34]. In section 3.2, we will discuss DCGAN[35] and one of the most commonly

used application of DCGAN i.e. Image-to-Image Translation [20, 36, 37]. Self

Attention Generative Adversarial Networks (SAGAN)[38] will be discussed in section

3.3. In the last section, 3.4, we will discuss about Partial Label Learning in binary,

multiclass and multilabel data[24, 25].

3.1 Improved Techniques for Training GANs

This section will discuss some problems faced by GANs and their solutions.

1. Mode Collapse: During the training, the Generator may collapse to a

parameter setting where it always produces the same output. A good and easy

strategy to avoid this type of failure is to allow the Discriminator to look at

multiple data examples in combination and perform minibatch discrimination.

2. Vanishing Gradient Descent: Sometimes Generator fails to change weights

during backpropagation. So Generator will always create fake samples as

10

3.2 DCGAN (DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL
NETWORK)

Discriminator has already been trained, and it is very good at detecting fake vs.

real samples, that is, D(G(z)) = 0. The vanishing Gradient Descent problem can

be avoided by training the Generator to maximize the loss instead of minimizing

it.

max
G

Ez∼pz(z)[log(D(G(z)))]

3. Hard to Achieve Nash Equilibrium: Training GANs require finding a Nash

Equilibrium, which is a point where each player in a two-player non-cooperative

game wishes to minimize its cost function. Finding Nash Equilibrium is a

challenging problem. Gradient Descent fails to converge. So to encourage the

convergence, gradient descent on each player’s cost was applied simultaneously,

despite the lack of guarantee that this procedure would converge. To encourage

convergence, the following techniques were introduced.

(a) Feature Matching: Generator is trained to match the expected value of

the features on an intermediate layer of the Discriminator.

(b) Minibatch Discrimination: Discriminator processes each example inde-

pendently, and hence there is no coordination between its gradients, that

is, there is no mechanism to tell the outputs of the Generator to become

more dissimilar to each other. In Minibatch Discrimination, Discriminator

is made to look at multiple data examples in combination.

(c) One-sided label smoothing: In this strategy, targets 0 and 1 are replaced

with smoothed values like 0.9 or 0.1. This reduces the vulnerability of

Neural Networks to adversarial examples.

3.2 DCGAN (Deep Convolutional Generative Adver-

sarial Network)

Convolutional Neural Networks, over the recent years, have seen massive adoption in

computer vision applications. DCGAN is an extension of GAN where Convolutional

11

3.2 DCGAN (DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL
NETWORK)

neural networks were used in the Generator and Discriminator. Soon after the

introduction of DCGAN in the machine learning community, GANs saw a variety of

applications ranging from bioinformatics, image to image translation, super-resolution,

Face Frontal View Generation, data augmentation, etc. The architecture guidelines

for stable Deep Convolutional GANs are given below:

• Pooling layers are replaced with strided convolutions in the Discriminator and

fractional-strided convolutions in the Generator.

• Batchnorm is used in both the Generator and the Discriminator.

• Fully connected hidden layers are removed for deeper architectures.

• ReLU activation in Generator is used for all layers except for the output, which

uses Tanh.

• LeakyReLU activation in the discriminator is used for all layers.

DCGAN provided a way to a lot of applications in real world. Image-to-Image

Translation techniques was one among them. Image-to-image translation (I2I) aims to

transfer images from a source domain to a target domain while preserving the content

representations. E.g., You can take a selfie as a source image and a cartoon as a

target reference to âtranslateâ it into desired artistic style image. Image-to-Image

Translation techniques can be of two types:

1. Paired Data: should have paired representation of an object. That is while

translating from one domain xi to another domain yi, and both domains are

from paired training data. E.g., Paired data is from changing a pencil sketch of

an object to its real-life counterpart.

2. Unpaired Data: has no representation between xi and yi. The goal is to

find the mapping between different image domains using unpaired training data.

E.g., Unpaired data consists of images vs. paintings.

12

3.2.1. STYLEGAN

In the upcoming subsections 3.2.1and 3.2.2, we will discuss two common Image-

to-Image Translation strategies; StyleGAN and SMIT (Stochastic Multi-Label Image-

to-Image Translation).

3.2.1 StyleGAN

StyleGAN comprises four modifications from progressive growing GAN.

1. Baseline Progressive GAN: StyleGAN uses baseline progressive GAN archi-

tecture; that is, it starts from the very first resolution and gradually increases

from low resolution to high resolution.

2. Bilinear upsampling: Usually, upsampling in Generator is done using the

transposed convolution layer, but here in styleGAN, bilinear upsampling (all

nearby pixels are used to calculate the pixel value) is used for upsampling.

3. Removing Latent input z: Latent vector z is not given directly to the

Generator, rather, to start the image synthesis process, StyleGAN starts with

the constant 4x4x512.

4. Mapping Network: In traditional GAN, the latent vector z is used as the

input to Generator, but in StyleGAN, Mapping Network is used. Mapping

Network comprises eight fully connected layers. It takes input from latent

space z and generates a styled vector. The style vector is then transformed

and incorporated into each block of the generator model via AdaIN (Adaptive

Instance Normalization). The AdaIN layers involve first standardizing the

output of the feature map to a standard Gaussian, then adding the style vector

as a bias term.

13

3.2.2. SMIT (STOCHASTIC MULTI-LABEL IMAGE-TO-IMAGE
TRANSLATION)

Figure 3.2: G has eighteen convolution layers with two for each resolution

3.2.2 SMIT (Stochastic Multi-Label Image-to-Image Transla-

tion)

Multilabelling in SMIT refers to the translation from one domain to the multiple

desired domains. In SMIT, a joint framework of; 1) Unpaired datasets, 2) Multiple

attributes, and 3) Multimodality is proposed. SMIT doesn’t use style regularization;

instead, Domain Embedding is used for both style and domain. Style and the target

labels are individually injected through AdaIN (Adaptive Instance Normalization)

layers in the Generator. A single Generator is used to conditionally produce countless

fake images that hold the underlying characteristics of the source image. The

Generator doesn’t ignore the noise perturbation, i.e., for a different level of noise,

14

3.3 SAGAN (SELF ATTENTION GENERATIVE ADVERSARIAL NETWORK)

SMIT produces different styles with the underlying characteristics and structure of

the target domain. The Discriminator not only differentiates between real and fake

images but also approximates the output distribution of the actual target by means

of an auxiliary classifier.

The goal of SMIT is to generate multi-attribute images with different styles using a

single Generator. Given yf and sf , SMIT learns a mapping function G to produce Xf ,

without having to access to the joint distribution p(Xr, Xf):

G(Xr, yf , sf)→ Xf

Where,

Xr → RealImage

yr → LabelsencodingXr

sr → UnknownStyleDistribution

yf → TargetLabel

sf → TargetStyle

Discriminator outputs source domain probability, i.e. real or fake and classifica-

tion/regression estimator namely; D(Xf)→ {0, yf} and D(Xr)→ {0, yr}.

3.3 SAGAN (Self Attention Generative Adversarial

Network)

Convolution-based GANs could easily generate images with a simpler geometry like

Ocean, Sky, etc. but failed on images that had some specific geometry. For example,

CGAN was able to produce the texture of the furs of dogs but could not generate

distinct legs. If we look at DCGAN, ConvNet (Convolutional Network) learns

representation hierarchically. Complex geometry contours demand long-range details

that the convolution, by itself, might not grasp. Long-range dependency might be

15

3.3 SAGAN (SELF ATTENTION GENERATIVE ADVERSARIAL NETWORK)

hard to understand.

Figure 3.3: In the image below we can see that the output −8 is computed by the
top-left Pixels of the image and it has no relation to any other part in the image

So for long-range modeling dependencies, the self-attention mechanism was introduced.

The idea of attention is to give information for a broader feature space of G. Self-

attention module guides the model to look at features in distant portions of the image.

Figure 3.4: 5th image shows that when the model generates the left ear of the dog, it
not only looks at the local region around the left ear but also looks at the right ear.

A self attention module takes n inputs and returns n outputs. It allows the inputs to

interact with each other and find out who they should pay more attention to.

16

3.3 SAGAN (SELF ATTENTION GENERATIVE ADVERSARIAL NETWORK)

Figure 3.5: Self-Attention mechanism

The feature map obtained from the previous convolution layer is passed through

three 1x1 convolutions separately. After passing through them, three feature maps

are obtained f, g, and h. Now the self-attention is performed over it. Transpose of f

is calculated and matrix-multiply by the g and takes the soft-max on all the rows. So

we get an attention map as a result which is then multiplied by the h vector, and an

output self-attention feature map is obtained. At last, multiply the final output by a

learnable scale parameter and add back the input as a residual connection.

g(xi) = wgx ; x ∈ Rc∗n , wg ∈ Rc′∗c , c′ =
c

8

f(xi) = wfx ; wf ∈ Rc′∗c

sij = f(xi)
Tg(xi)

βj,i =
exp(xij)∑n
i=1 exp(sij)

; β ∈ Rn∗n

β gives us the attention map which gives us the extend to which the model attends

17

3.4 PARTIAL LABEL LEARNING

to the ith location when synthesizing the jth region.

f(hi) = whx ; wh ∈ Rc∗c

oj =
n∑

i=1

βj,ih(xi) ; o = (o1, ..., on) ∈ Rc∗n

Final output is multiplied by a learnable parameter γ and added back the input as a

residual connection.

yi = γoi + xi

γ is initialized to 0, and it cancels out the attention layers at the beginning. As a result,

the network only relies on the local representation from local convolution layers. Then

γ receives gradient descent updates, and the network gradually allows the passage of

signals from non-local fields.

Self Attention Module is used in both the Generator and the Discriminator. The

attention Module in Generator creates images with fine details, and the attention

module in Discriminator accurately enforces complicated geometric constraints on the

global image structure.

3.4 Partial Label Learning

In multilabel learning, each instance can belong to more than one class or label.

E.g., The weather can be sunny and cloudy at the same time, or a movie can

be both comedy and action. The partial label learning problem is ubiquitous in

multilabel data. In section 3.4.1, we will discuss PLLGAN (Partial Label Learning via

Generative Adversarial Nets) [24]. PLLGAN deals with partial label learning problems

in multiclass data. In section 3.4.2, we will discuss PMLGAN (Partial Multi-Label

Learning via GANs) [25]. PMLGAN deals with partial label learning in multilabel

data.

18

3.4.1. PLLGAN (PARTIAL LABEL LEARNING VIA GANS)

3.4.1 PLLGAN (Partial Label Learning via GANs)

In PLLGAN, each sample is provided with multiple candidate labels or labels

(candidate to be true label or labels) while only one of them is correct. Using

PLLGAN, partial label problems are solved by combining CGAN (Conditional GAN)

and SSGAN (Semi-supervised GAN). The Generator adopts the idea of CGAN;

candidate labels are given to the Generator as a condition to generate samples similar

to the real samples. The Discriminator adopts the idea of SSGAN; that is, it not only

distinguishes generated and actual samples but also predicts the ground-truth labels.

Let D = {(xi, si) ; 1 ≤ i ≤ n} be a partial label training set of n samples where xi

is the feature vector, si is the corresponding candidate label set, and yi is the ground

truth label set. yi ∈ {0, 1}; yij = 1 indicates jth label is among the candidate label

set of the sample xi, and yij = 0 means jth label is a non candidate label of xi. The

total loss function of PLLGAN is given by:

max
G

min
D

V (D,G) = Exi|ypi ∼p
data(xi|y

p
i
)
||D(xi|yip)− yrci ||22

+ Ezi|ypi ∼p
z(zi|y

p
i
)
||D(G(zi|yip))− yfci ||22

Here, pdata is the real training data distribution, z is the noise vector sampled from

an Std. Normal Distribution, ypi is the partial label vector of real training data, yrci is

the reconstructed labels of the real samples, and yfci is the reconstructed labels of the

generated samples.

3.4.2 PMLGAN (Partial Multi-Label Learning via GANs)

IN PMLGAN, each instance is assigned multiple candidate labels that are partially

relevant; some irrelevant noise labels are assigned with the ground-truth labels, or

some labels are missing. There are four components in PMLGAN: 1) Generator, 2)

Discriminator, 3) Disambiguation network and 4) Prediction network. The Generator

generates samples in the feature space given latent vectors in the label space. The

19

3.4.2. PMLGAN (PARTIAL MULTI-LABEL LEARNING VIA GANS)

discriminator separates generated and real data. The disambiguation network predicts

the probability of each candidate label being an additive noise for the training instance.

The prediction network predicts disambiguated true labels of each instance from its

input features.

Figure 3.6: Four Components: Generator G, Discriminator D, Disambiguation network
D̂, and Prediction network F.

20

3.4.2. PMLGAN (PARTIAL MULTI-LABEL LEARNING VIA GANS)

Let S = (X, Y) = {(xi, yi)}ni=1 be a training set with n samples. Here, xi is the

input feature vector for ith instance and yi ∈ {0, 1} is the corresponding annotated

label indicator vector. The objective of PMLGAN is to obtain ground truth labels zi

from each annotated candidate label vector yi, that is, we drop the additional 1’s from

each candidate label vector yi. This is obtained using Disambiguation network D̂:

D̂ : σx → σδ

Here, σ denotes the corresponding domain space. The above equation predicts the

irrelevant labels for a given instance. The true label indicator can be recovered as:

zi = ReLU(yi, δi)

Here, δi is the output of disambiguation network D̂(xi). ReLu activation function

ensures that disambiguation effort is only counted on the candidate labels. Then the

prediction network can be learned F : σx → σz, that is, a multilabel classifier to

predict the disambiguated ground truth labels for each instance. With The prediction

and disambiguation network, we can perform partial multilabel learning by minimizing

the classification loss on training data S:

min
F,D̂

Lc(X, Y ;F, D̂) =
∑

(xi,yi)∼S lc(F (xi), zi)

s.t.zi = ReLU(yi − δi) , δi = D̂(xi) , ∀(xi,yi)∼S

Here, lc(., .) is the cross-entropy loss between the predicted probability of each label

and its confidence being a ground truth label. Label indicator vectors are discrete

values, and hence sigmoid activation function on the last layer of each network, D̂(x)

and F (x), can predict the probability of each class label being the additive irrelevant

label and the ground truth label respectively.

21

Chapter 4

MLGAN

This section presents our approach MLGAN (Multilabel Generative Adversarial

Networks). In MLGAN, instead of generating instances for only one class, we will

generate instances for all labels with an imbalance. Features, as well as labels

for multilabel datasets, are synthesized using adversarial training. Instead of only

considering the neighboring minority samples as the seed to generate new synthetic

samples, we will consider taking the whole distribution of minority samples in those

classes where we want to overcome the imbalance problem. MLSMOTE creates data

by looking at neighbourhood only, so there is a limitation on the number of samples

that we can create. Synthesizing beyond that limit may make our model prone to

overfitting as it would more or less behave like random oversampling. In MLGAN,

there is no limit on the number of generated distinct samples. We can create infinite

samples from n training samples. The first step is to split the data into train and test

using k-fold cross-validation. The value of k is set to 5, keeping four folds for Ttrain

and one fold for Ttest. In our approach, we have three main aspects of solving:

1. First aspect will be to know which labels are minority ones.

2. Once minority labels are selected, we use representative class samples to rep-

resent each class distribution of those minority labels. The class representative

samples will be given to GANs to generate synthetic samples.

22

4.1 MEASURING IMBALANCE

3. Once synthetic samples are generated, multilabel learning algorithms are used

to handle multilabel datasets.

In sections 3.1 and 3.2, a discussion on the first two aspects will be given in detail.

The third aspect will be discussed as we move ahead in this dissertation.

4.1 Measuring Imbalance

In binary and multiclass, the imbalance ratio is used to measure the imbalance in a

particular label. The imbalance ratio is the proportion of majority class instances to

the number of minority class instances. In multilabel learning, the imbalance of a

particular label is evaluated by IRLbl (Imbalance ratio per label) [11][12]. IRLbl is

the ratio between the majority and the considered labels.

IRLbli =
maxj=1,...,q{m1

j}
m1

i

, i = 1, 2, ..., q

where, mb
i = ∥{(xj, yji), yji = b, 1 <= j <= n}∥ be the number of instances whose ith

label value is equal b ∈ {0, 1}.

MeanIR represents the average level of imbalance in multi-label data which is

calculated by considering the average of IRLbl.

MeanIR =
1

∥q∥

∥q∥∑
i=1

IRLbli

CVIR (Coefficient of variation of IRLbl) examines whether all labels suffer from a

similar or different level of imbalance.

CV IR =
1

MeanIR

√√√√ q∑
i=1

(IRLbli −MeanIR)2

q − 1

MeanIR sets the threshold, so we don’t need to consider setting a particular number of

labels as a minority. CVIR used in Equation 3 examines whether all labels suffer from

23

4.2 GENERATIVE ADVERSARIAL NETWORK (GAN) ARCHITECTURE

a similar or different level of imbalance or, on the contrary, there are big differences in

them. The higher the CVIR, the larger this difference will be. For instance, for 3 three

classes C1 = [1,1,0,0], C2 = [0,1,0,0] and C3 = [1,1,1,0], we calculate the IRLbl of each

class. IRLblC1 is 1.5, IRLblC2 is 3 and IRLblC3 is 1. MeanIR is 1.8333, and CVIR

is 0.5677. Here, 1.8333 is the threshold; that is, any class having a value more than

1.8333 has an imbalance. In this case, C2 has an imbalance. CVIR value indicates

that there is a 56% variation in the IRLbl values. The values of MeanIR and CVIR

shown in section 4 are of the entire multilabel dataset. We will only be calculating

these values on Ttrain, keeping Ttest as it is for performance testing. Having CVIR

greater than 1 implies a huge imbalance.

4.2 Generative Adversarial Network (GAN) Archi-

tecture

After finding the imbalance ratio of each label and determining the threshold MeanIR,

we will start generating synthetic samples for all the classes with an imbalance. This

process is done until IRLbllabel = MeanIR , that is, the Imbalance ratio of each label

equals MeanIR. To synthesize new samples, We use CTGAN [10] as our base model.

We will be using the architecture of CTGAN because the real-world tabular consists

of mixed types of data (Discrete or Continuous). In CTGAN, both softmax and tanh

are applied to the output. A tanh activation function is employed in the last layer of

the network to normalize the discrete values in the range [-1,1]. Continuous values are

usually non-Gaussian, so Mode-specific Normalization is used to normalize continuous

values.

CTGAN uses Conditional-Generator so that it can be interpreted as the conditional

distribution of rows given the particular value at that specific column, i.e., if j∗ is the

value in the i∗th discrete column Di∗ that has to be matched by the generated samples

r̂ then

24

4.3 PROPOSED APPROACH

r̂ ∼ Pg(row,Di∗ = j∗)

CTGAN consists of three key elements:

Conditional Vector: Discrete columns D1, ..., DN end up as one-hot vectors

d1, ..., dN such that ith one-hot vector is di = [d
(j)
i], where j = 1, ..., ∥Di∥. The

condition is expressed in term of mask vectors as

[m
(j)
i] =

1 i = i∗ and j = j∗

0 otherwise

where, mi = [m
(j)
i] be the ith mask vector associated with the ith one-hot vector

di

Eg. D1=(1,2,3,4,5) and D2=(1,2,3) are two discrete columns, the condition (D2=2)

is expressed by the mask vector m1 = [0,0,0,0,0] and m2 = [0, 1, 0]. So the condition

= [0,0,0,0,0,0,1,0] .

Training by sampling: CTGAN model employs the training-by-sample tech-

nique; that is properly sample the conditional vector and training data, which helps

the model explore all possible values evenly.

Generator Loss: Cross entropy between mi and d̂i is added to penalize the loss

so we get mi = d̂i,averaged over all the instances.

4.3 Proposed Approach

We consider finding the imbalance on the Ttrain by using two measures; IRLbl and

MeanIR. After finding the classes with an imbalance, we will start generating synthetic

samples using Generative Adversarial Networks, whose architecture is discussed in the

25

4.3 PROPOSED APPROACH

above section. We will keep generating synthetic samples until IRLbllabel = MeanIR.

Following that, we pass the training data concatenated with synthesized data into five

different multilabel learning algorithms that we will be discussing in the next section.

Test data will be used to evaluate the model performance. We calculate the efficiency

of MLGAN by comparing it with MLSMOTE on six multilabel datasets. We will

synthesize the same amount of synthetic samples in MLSMOTE as that synthesized in

MLGAN. The number of synthetic samples to be generated is decided by the imbalance

ratio IRLbl of each label, while MeanIR sets the threshold value. The implementation

of both will be compared using many evaluation criteria discussed briefly in the next

section. We will be taking only a representation, representing each class distribution,

from the minority samples in Ttrain. This is done to improve the time performance of

MLGAN. Algorithm 1 shows the pseudo-code of the proposed MLGAN algorithm.

Algorithm 1: MLGAN pseudo-code.
Require: D ←MultilabelDataset
1: Train, Test← kfoldcrossvalidation
2: L← LabelsInTrainSet(Train)
3: minsamples← minsamples(Train) ▷ Bag of minority label samples
4: minsamples← sample(minsamples, frac = 0.2)
5: MeanIR← CalcMeanIR(Train, L)
6: for each label in L do
7: IRLbllabel ← CalcIRLbl(Train, label)
8: if IRLbl > MeanIR then
9: while IRLbl == MeanIR do

10: synsamples← GAN(minsamples, epochs = 80, condition)
11: NewTrain← concatenate(Train, synsamples)
12: end while
13: end if
14: end for

Unlike MLSMOTE, the input of algorithm 1 is Multilabel Dataset (D) only and

not the number of neighbors to use (K). As suggested in MLSMOTE, the number of

neighbors considered is five by default. While comparing MLGAN with MLSMOTE,

26

4.3 PROPOSED APPROACH

we have also set the value of k to 5. In section 4, we will see how changing the value

of the parameter k in MLSMOTE will impact the performance. MLGAN is free from

this parameter which is an excellent advantage of this approach. Discrete columns are

given as a condition to the GAN architecture. The output of algorithm 1 will be new

Ttrain which will consist of samples from the original Ttrain and the newly generated

samples. Ttest is not changed in this process and will be called only while evaluating

the performance using multilabel learning algorithms.

27

Chapter 5

Experimental Setup and Results

To assess the benefits of MLGAN, an extensive experimental study is conducted in

this work. The results produced by MLGAN are compared against those obtained by

MLSMOTE.

5.1 Experimental Setup

5.1.1 Datasets

In order to get an effective performance evaluation, six real-world multi-label datasets

are collected for experimental analysis. All the datasets can be downloaded from

Kaggle1, UCO2 and MULAN3. All the multilabel datasets were preprocessed on which

the effect of rebalancing produced by MLGAN was tested. Table 1 reports the detailed

information of all the datasets. For each dataset, the k-fold cross-validation technique

is used to split the data in Ttrain and Ttest, where k is set to 5.

1https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/data/
2https://www.uco.es/kdis/mllresources/
3http://mulan.sourceforge.net/datasets-mlc.html/

28

https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/data/
https://www.uco.es/kdis/mllresources/
http://mulan.sourceforge.net/datasets-mlc.html/

5.1.1. DATASETS

Table 5.1: Characterization measures of six datasets used in experimentation

Dataset Domain Samples Features Labels Label Count

Scene Image 2407 294 6 1.074
Yeast Biology 2417 103 14 4.237
Amazon Planet 40478 512 17 2.87
Emotions Music 593 72 6 1.869
Mirflickr Images 2500 150 24 3.716
Flags Image 194 19 7 3.392

Figure 5.1 shows the number of minority and majority label samples belonging to a

particular class. As it is evident from the graph that there is a considerable imbalance

in almost all of the multilabel datasets.

29

5.1.2. CLASSIFIERS

Figure 5.1: Number of samples of the minority and majority label in each class.

5.1.2 Classifiers

The multilabel learning problem is tackled by either transforming into other well-

established learning scenarios or adapting popular learning techniques. In this

dissertation, a simple categorization of five well-known Multilabel learning algorithms

is adopted. A brief introduction of them is given in this section. The objective of using

several algorithms is to check whether GANs can reduce the imbalance in multilabel

datasets in a classifier-independent way; that is, the classifier should have a deplorable

influence on the effectiveness of the resampling strategy.

• Binary Relevance[13] decomposes the multilabel learning problem into q indepen-

dent binary learning problem and trains a classifier on each of these decomposed

binary problems. Each decomposed binary learning problem contains the same

number of instances as the original multilabel learning. For new instances,

Binary Relevance outputs the union of the labels positively predicted by the

q classifiers.

• Label Powerset[14] decomposes the multilabel learning problem into a multi-

class classification problem. It considers each unique set of labels as one of the

classes of a new single-label classification task.

30

5.1.2. CLASSIFIERS

• In RAkELd[15] (Random Label Space Partitioning with Label Powerset), Label

space is divided into equal partitions of size k. Label Powerset classifier is trained

on each partition, and prediction is made by summing the result of all trained

classifiers.

• Classifier chains[16] transform a multilabel problem into a chain of binary

classification problems, where subsequent binary classifiers are built upon the

predictions of preceding ones.

• Majority Voting Classifier[17] partitions the label space into separate sublabel

spaces using provided clustering class. A base multilabel subclassifier is trained

on each subspace. A label is assigned to an instance if more than half of all

classifiers (majority) trained on a label subspace that contains the label have

assigned it to a given sample.

In all the multilabel learning approaches discussed above, the employed base model

is Support Vector Machines (SVM). The objective of SVM is to find a hyperplane in

an n-dimensional space that has the maximum margin such that it distinctly classifies

the data points. If data is linearly separable, we can select the margin such that there

are no points between them, and we try to maximize their distance. In such cases, a

pair of (w,b) exists such that:

w.xi + b ≥ 1,∀xi ∈ P

w.xi + b ≤ 1,∀xi ∈ N

This can be written as:

yi(w.xi + b) ≥ 1, 1 ≤ i ≥ n

where, yi = +1 for P (Positive samples), and yi = −1 for N (Negative samples). The

optimization can be set up as a convex quadrating programming problem:

31

5.1.3. EVALUATION METRICS

min
w

∥w∥2
2

s.t.

yi(w.xi + b) ≥ 1, 1 ≤ i ≤ n

Data contains misclassified instances that can be addressed by soft margin in the

real world. Soft margin is accomplished by introducing slack variables ξi, i=1,2,...,n

in the constraints.

Soft margin condition becomes:

yi(w.xi + b) ≥ 1− ξi, 1 ≤ i ≤ n

ξi ≥ 0

Our goal in soft margin SVM is to maximize the margin while also minimizing the

sum of slacks. The optimization problem for soft margin becomes:

min∥w∥2
2

+ c
∑N

n=1(ξi)

s.t.

yi(w.xi + b) ≥ 1− ξi, 1 ≤ i ≤ n ,

ξi ≥ 0

Here c is a regularization parameter controlling the tradeoff between large margin

and small hinge loss.

5.1.3 Evaluation Metrics

We have evaluated the performance of the compared algorithms in terms of nine

common metrics.

32

5.1.3. EVALUATION METRICS

1. Hamming Loss (HammingL): It reports that how many times on average the

relevance of an example to a class label is incorrectly predicted.

HammingL =
1

nL

n∑
i=1

L∑
j=1

I(yji ̸= ŷji)

where, n is the number of samples yi is the set of actual Labels, L denotes the

length of label and ŷi is the set of predicted labels.

2. Accuracy Score (Acc Score): Accuracy score for the sample is defined by the

proportion of the number of correctly predicted labels and total number of labels.

Final accuracy is defined by taking the average of accuracy over all test samples;

that is, proportion of the sum of accuracy of all training samples and number of

training samples

AccScore =
1

n

n∑
i=1

∥yi ∩ ŷi∥
∥yi ∪ ŷi∥

3. Exact Match Ratio (EMR): EMR extends the concept of accuracy but does not

account for partially correct labels.

EMR =
1

n

n∑
i=1

I(yi = ŷi)

where, I denotes the Indicator Function.

4. 0/1 Loss: We calculate proportion of instances whose actual value is not equal

to predicted value.

0/1Loss =
1

n

n∑
i=1

I(yi ̸= ŷi)

5. Recall : Recall is defined as the proportion of predicted correct labels to the

total number of predicted labels, averaged over all instances.

Recall =
1

n

n∑
i=1

∥yi ∩ ŷi∥
∥ŷi∥

33

5.2 EXPERIMENTAL RESULTS

6. Precision: It is the proportion of predicted correct labels to the total number of

actual labels, averaged over all instances.

Precision =
1

n

n∑
i=1

∥yi ∩ ŷi∥
∥yi∥

7. F1-Measure: It is the harmonic mean of recall and precision.

F1−measure =
1

n

n∑
i=1

∥yi ∩ ŷi∥
∥yi∥+ ∥ŷi∥

8. Ranking Loss (RankL): This determines the percentage that the ranking of

negative labels of the example are higher than that of positive labels.

RankL =
1

n

n∑
i=1

1

∥yi∥∥ŷi∥

9. Average AUC (AUC): Calculates the average fraction of times a positive instance

of all-class labels has a higher ranking than a negative instance.

5.2 Experimental Results

Firstly, we will measure imbalance using the concept discussed in section 3.1. Table

2 shows the MeanIR and CVIR of the six datasets used in this study. The more the

CVIR of a multilabel dataset, the more is the overall imbalance.

Table 5.2: Imbalance ratio per label

Dataset MeanIR CVIR

Scene 1.252 0.121
Yeast 4.274 1.796
Amazon 27.01 1.501
Emotions 1.478 0.179
MirFlickr 6.756 1.244
Flags 1.341 0.222

34

5.2 EXPERIMENTAL RESULTS

The values of MeanIR and CVIR showed in Table 2 are of the entire multilabel

dataset. It should be noted that the values are shown in Table 2 show for each

multilabel dataset the MeanIR and CVIR values before applying MLGAN. Since we

are splitting the multilabel datasets using k-fold cross-validation, where k is set to 5.

Out of the five folds, only four folds are taken as Ttrain, so the values of MeanIR and

CVIR are calculated only on Ttrain as MLGAN is applied only to training partitions.

After applying MLGAN to the multilabel datasets, we reassess the CVIR for each

multilabel dataset. Figure 2 compared CVIR of the original dataset and rebalanced

dataset using the two strategies; MLGAN and MLSMOTE. From these results, it can

be drawn that MLGAN does produce the change in imbalance level.

Figure 5.2: CVIR for each case: Higher CVIR means huge Imbalance in the dataset.

The next step is the analysis of results produced by the two strategies, MLGAN and

MLSMOTE. We will also be comparing the results of both MLGAN and MLSMOTE

with the Original dataset; that is, we will compare the results obtained by MLGAN

and MLSMOTE with the multilabel dataset in which no augmentation of samples has

been done. Table 3 shows the results obtained when multilabel learning approaches

35

5.2 EXPERIMENTAL RESULTS

discussed in section 4.1.2 are used. All the results are obtained by keeping the number

of epochs fixed to 80 in the case of MLGAN. In the case of MLSMOTE, the value of k

(nearest neighbors) is kept fixed at 5. For the ease of comparing the results produced

by the two strategies, Table 3 only shows the F1-Measure, which is nothing but the

harmonic mean of recall and precision. 0/1 Loss is also not shown in the results as

EMR + 0/1Loss = 1(100%)

36

5.2 EXPERIMENTAL RESULTS

Table 5.3: Classification results with MLGAN and MLSMOTE when five Multilabel
learning algorithms are used.

Datasets Binary Relevance

HammingL EMR F1-Measure RankL AUC

Scene
MLGAN 0.0557 0.7255 0.7713 0.2363 0.7540
Original 0.0547 0.7318 0.7733 0.2338 0.7524
MLSMOTE 0.0602 0.7151 0.7595 0.2471 0.7571

Emotions
MLGAN 0.3011 0.0168 0.0672 0.9481 0.5075
Original 0.3039 0.0084 0.0686 0.9495 0.5156
MLSMOTE 0.3008 0.0169 0.0790 0.9378 0.5114

Flags
MLGAN 0.3105 0.0263 0.6876 0.4699 0.5095
Original 0.3195 0.0526 0.6590 0.4776 0.4974
MLSMOTE 0.3150 0.0256 0.6849 0.4752 0.5075

MirFlickr
MLGAN 0.1507 0.0212 0.0862 0.9231 0.5077
Original 0.1520 0.0204 0.0920 0.9207 0.5078
MLSMOTE 0.1511 0.0170 0.0897 0.9231 0.5089

Amazon
MLGAN 0.0741 0.4019 0.7557 0.3062 0.5656
Original 0.0745 0.3995 0.7527 0.3099 0.5647
MLSMOTE 0.0747 0.3970 0.7518 0.3113 0.5667

Yeast
MLGAN 0.1839 0.1987 0.6315 0.4254 0.5844
Original 0.1888 0.1887 0.6239 0.4451 0.5809
MLSMOTE 0.1861 0.1884 0.6258 0.4324 0.5815

Datasets Label PowerSet

HammingL EMR F1-Measure RankL AUC

Scene
MLGAN 0.0575 0.7900 0.8427 0.1705 0.7562
Original 0.0554 0.7962 0.8489 0.1642 0.7545
MLSMOTE 0.0609 0.7796 0.8322 0.1808 0.7575

Emotions
MLGAN 0.3445 0.1681 0.465 0.5229 0.6190
Original 0.3599 0.1512 0.4103 0.5746 0.5351
MLSMOTE 0.3571 0.1680 0.4439 0.5384 0.5980

Flags
MLGAN 0.2894 0.2308 0.6799 0.4244 0.5419
Original 0.3003 0.2051 0.6695 0.4311 0.5000
MLSMOTE 0.3076 0.1282 0.6496 0.4658 0.5000

MirFlickr
MLGAN 0.1689 0.071 0.2174 0.8019 0.5066
Original 0.1739 0.0494 0.1855 0.8301 0.5002
MLSMOTE 0.1734 0.0504 0.1845 0.8316 0.5002

Amazon
MLGAN 0.0752 0.4770 0.7677 0.2815 0.6128
Original 0.0766 0.4673 0.7628 0.2872 0.6109
MLSMOTE 0.0759 0.4655 0.7647 0.2848 0.6170

Yeast
MLGAN 0.2048 0.2561 0.6292 0.4176 0.5804
Original 0.2062 0.2877 0.6282 0.4207 0.5865
MLSMOTE 0.1968 0.2727 0.6481 0.4012 0.5841

37

5.2 EXPERIMENTAL RESULTS

Datasets RAkELd

HammingL EMR F1-Measure RankL AUC

Scene
MLGAN 0.0575 0.7475 0.8232 0.1837 0.7508
Original 0.0705 0.7385 0.7773 0.2292 0.8646
MLSMOTE 0.0592 0.7380 0.8073 0.1987 0.7647

Emotions
MLGAN 0.3417 0.1008 0.3114 0.7397 0.5132
Original 0.3474 0.1779 0.3093 0.7220 0.5082
MLSMOTE 0.3305 0.0504 0.2647 0.7913 0.5231

Flags
MLGAN 0.2932 0.1578 0.6137 0.4864 0.5146
Original 0.3120 0.1578 0.6488 0.4666 0.5085
MLSMOTE 0.3479 0.1025 0.6223 0.5106 0.4984

MirFlickr
MLGAN 0.1554 0.0218 0.1009 0.9129 0.5083
Original 0.1547 0.0266 0.0771 0.9280 0.5048
MLSMOTE 0.1528 0.0314 0.1340 0.8888 0.5098

Amazon
MLGAN 0.0746 0.4082 0.7598 0.2997 0.5762
Original 0.0750 0.3974 0.7565 0.3054 0.5750
MLSMOTE 0.0751 0.3998 0.7464 0.3184 0.5704

Yeast
MLGAN 0.1871 0.2024 0.6427 0.4108 0.5844
Original 0.1918 0.2107 0.6269 0.4255 0.5872
MLSMOTE 0.1903 0.2086 0.6344 0.4162 0.5830

Datasets Method Classifier Chains
HammingL EMR F1-Measure RankL AUC

Scene
MLGAN 0.0643 0.7596 0.8108 0.2001 0.7954
Original 0.0661 0.7588 0.8087 0.2018 0.7916
MLSMOTE 0.0703 0.7484 0.8011 0.2095 0.7533

Emotions
MLGAN 0.2689 0.0000 0.0644 0.9537 0.5164
Original 0.2717 0.0000 0.0644 0.9537 0.5142
MLSMOTE 0.2703 0.0000 0.0644 0.9537 0.5153

Flags
MLGAN 0.3040 0.2051 0.6589 0.4487 0.5152
Original 0.3040 0.2051 0.6788 0.4226 0.5134
MLSMOTE 0.3186 0.1025 0.6930 0.4538 0.5256

MirFlickr
MLGAN 0.1588 0.0364 0.1797 0.8397 0.5113
Original 0.1574 0.0296 0.1572 0.8689 0.5041
MLSMOTE 0.1550 0.0246 0.1294 0.8842 0.5070

Amazon
MLGAN 0.0742 0.4016 0.7555 0.3065 0.5654
Original 0.0721 0.4094 0.7617 0.3011 0.5682
MLSMOTE 0.0734 0.4001 0.7560 0.3059 0.5679

Yeast
MLGAN 0.2057 0.2401 0.6199 0.4308 0.5955
Original 0.2151 0.2215 0.6140 0.4350 0.5911
MLSMOTE 0.2131 0.2252 0.6106 0.4397 0.5869

38

5.2 EXPERIMENTAL RESULTS

Datasets Method Majority Voting Classifier
HammingL EMR F1-Measure RankL AUC

Scene
MLGAN 0.0696 0.6819 0.7151 0.2881 0.8489
Original 0.0696 0.6715 0.7144 0.2943 0.8432
MLSMOTE 0.0727 0.6777 0.7079 0.2978 0.8416

Emotions
MLGAN 0.2857 0.0168 0.1316 0.9005 0.5308
Original 0.2937 0.0254 0.1002 0.9209 0.5264
MLSMOTE 0.2997 0.0168 0.0868 0.9327 0.5164

Flags
MLGAN 0.3646 0.0789 0.521 0.6232 0.6199
Original 0.3809 0.0512 0.6020 0.5405 0.4878
MLSMOTE 0.3759 0.0263 0.6284 0.5618 0.5088

MirFlickr
MLGAN 0.1524 0.0186 0.0000 0.9814 0.5000
Original 0.1552 0.0162 0.0000 0.9838 0.5000
MLSMOTE 0.1541 0.0166 0.0000 0.9834 0.5000

Amazon
MLGAN 0.1321 0.0009 0.4023 0.7094 0.5300
Original 0.1332 0.0004 0.4028 0.7089 0.5243
MLSMOTE 0.1329 0.0008 0.4048 0.7076 0.5258

Yeast
MLGAN 0.2533 0.0310 0.3190 0.7584 0.5749
Original 0.2559 0.0351 0.3250 0.7543 0.5754
MLSMOTE 0.2546 0.0455 0.3172 0.7580 0.5743

These results determine that MLGAN can accomplish a general improvement

in classification results when compared with MLSMOTE. MLGAN, when applied

to the flags dataset, shows a very good performance in almost all the multilabel

learning approaches. When applied to Yeast and Emotions datasets, improvement

in classification results is accomplished compared with MLSMOTE in almost all the

multilabel learning approaches. Mirflickr and amazon multilabel dataset shows almost

similar classification results on all the multilabel methods. Amazon and Mirflickr are

large datasets, so augmenting a particular amount of data doesn’t have that much

impact on the classification results. The scene dataset shows either good or similar

classification results on all the strategies strategies, if not worse. The reason for

the scene dataset not showing results as good as demonstrated by other multilabel

datasets could be the lack of imbalance in the scene dataset, as is evident from the

value of CVIR in Table 2. These results in combination indicate that the classifier has

a deplorable influence on the effectiveness of our strategy. So, our strategy MLGAN

has successfully reduced the imbalance in a classifier-independent way.

39

5.2.1. EFFECT OF K IN MLSMOTE

5.2.1 Effect of K in MLSMOTE

MLSMOTE works on the principle of Smoothness assumption; it is assumed that

nearby points have the same label. In this study, the value of K (parameter in

MLSMOTE) is set to 5. Our proposed approach, MLGAN, doesn’t require any

parameter k. This is a considerable advantage of MLGAN over MLSMOTE.

Table 5.4: Classification results when k = 3, 5 and 7

Datasets
HammingL EMR F1-Measure RankL AUC

Scene
k=3 0.0582 0.7879 0.8406 0.1725 0.7564
k=5 0.0609 0.7796 0.8322 0.1808 0.7575
k=7 0.0589 0.7858 0.8385 0.1746 0.7509

Emotions
k=3 0.3912 0.1610 0.4511 0.5798 0.5927
k=5 0.3571 0.1680 0.4439 0.5384 0.5980
k=7 0.3940 0.1610 0.3940 0.6302 0.5324

Flags
k=3 0.3040 0.2051 0.6619 0.4414 0.4989
k=5 0.3076 0.1282 0.6496 0.4658 0.5000
k=7 0.3150 0.2051 0.6713 0.4645 0.4990

MirFlickr
k=3 0.1634 0.0410 0.1152 0.8867 0.4998
k=5 0.1734 0.0504 0.1845 0.8316 0.5002
k=7 0.1736 0.0608 0.2190 0.8008 0.4997

Amazon
k=3 0.0763 0.4629 0.7626 0.2878 0.6134
k=5 0.0759 0.4655 0.7647 0.2848 0.6170
k=7 0.0759 0.4667 0.7646 0.2847 0.6166

Yeast
k=3 0.1992 0.2670 0.6368 0.4058 0.5897
k=5 0.1968 0.2727 0.6481 0.4012 0.5841
k=7 0.1913 0.2608 0.6560 0.3820 0.5976

Table 4 shows the classification results of MLSMOTE when the value of k is set

to 3, 5, and 7. The multilabel algorithm used in Table 4 is Label PowerSet. The

results are proof that k has a pretty good impact on the classification results in

MLSMOTE. Setting the value of K in MLSMOTE would require extra effort. This is a

clear advantage of using MLGAN over MLSMOTE for augmenting data in multilabel

datasets.

40

Chapter 6

Conclusion and Future Works

In this dissertation, GAN based solution for the imbalance problem in the multilabel

classification has been presented. A review of the previous attempts to handle

class imbalance has been given, and how our approach, MLGAN, differs from other

techniques. To our knowledge, our method is the first attempt to overcome the

imbalance in multilabel datasets using GANs. We take a bag of all the samples

belonging to the minority label and synthesize data via GANs using the same bag. In

this way, our newly synthesized data helps us overcome the class imbalance problem

in such a way that the freshly synthesized sample has similar characteristics with that

of all the minority labeled samples and not only with the samples in a particular

neighborhood. We performed experiments on six multilabel datasets using five

multilabel algorithms. It is worth noting that MLGAN is able to solve the problem of

class imbalance in a classifier-independent way. We achieve better classification results

when compared with MLSMOTE. Also, in MLGAN, we do not require any parameter

K as we do in MLSMOTE. All these facts encourage us to recommend using MLGAN

to overcome the class imbalance problem. Multilabel Learning suffers from a common

problem of partial label learning. In the future, we will take the partial label learning

problem into account while solving the imbalance problem using MLGAN. We will

solve the partial multilabel learning problem generated while synthesizing from our

approach MLGAN via the Generative Adversarial Network (PMLGAN).

41

References

[1] M.-L. Zhang and Z.-H. Zhou, “Multilabel neural networks with applications to

functional genomics and text categorization,” IEEE transactions on Knowledge

and Data Engineering, vol. 18, no. 10, pp. 1338–1351, 2006. 1

[2] A. K. McCallum, “Multi-label text classification with a mixture model trained by

em,” in AAAI 99 workshop on text learning, Citeseer, 1999. 1

[3] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label scene

classification,” Pattern recognition, vol. 37, no. 9, pp. 1757–1771, 2004. 1

[4] A. Clare and R. D. King, “Knowledge discovery in multi-label phenotype data,”

in European conference on principles of data mining and knowledge discovery,

pp. 42–53, Springer, 2001. 1

[5] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Multilabel text classification for

automated tag suggestion,” in Proceedings of the ECML/PKDD, vol. 18, p. 5,

Citeseer, 2008. 2

[6] F. Charte, A. Rivera, M. J. d. Jesus, and F. Herrera, “A first approach to deal

with imbalance in multi-label datasets,” in International conference on hybrid

artificial intelligence systems, pp. 150–160, Springer, 2013. 2, 7

[7] Y. Du, W. He, Q. Xia, W. Zhou, C. Yao, and X. Li, “Thioether

42

REFERENCES

phosphatidylcholine liposomes: a novel ros-responsive platform for drug delivery,”

ACS applied materials & interfaces, vol. 11, no. 41, pp. 37411–37420, 2019. 2, 7

[8] F. Charte, A. J. Rivera, M. J. del Jesus, and F. Herrera, “Mlsmote: Ap-

proaching imbalanced multilabel learning through synthetic instance generation,”

Knowledge-Based Systems, vol. 89, pp. 385–397, 2015. 2, 3, 7

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural

information processing systems, vol. 27, 2014. 2, 4

[10] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Modeling

tabular data using conditional gan,” Advances in Neural Information Processing

Systems, vol. 32, 2019. 2, 5, 24

[11] F. Charte, A. Rivera, M. J. d. Jesus, and F. Herrera, “A first approach to deal

with imbalance in multi-label datasets,” in International conference on hybrid

artificial intelligence systems, pp. 150–160, Springer, 2013. 2, 23

[12] B. Liu, K. Blekas, and G. Tsoumakas, “Multi-label sampling based on local label

imbalance,” Pattern Recognition, vol. 122, p. 108294, 2022. 2, 3, 23

[13] M.-L. Zhang, Y.-K. Li, X.-Y. Liu, and X. Geng, “Binary relevance for multi-label

learning: an overview,” Frontiers of Computer Science, vol. 12, no. 2, pp. 191–202,

2018. 3, 30

[14] E. A. Cherman, M. C. Monard, and J. Metz, “Multi-label problem transformation

methods: a case study,” CLEI Electronic Journal, vol. 14, no. 1, pp. 4–4, 2011.

3, 30

[15] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Random k-labelsets for multilabel

classification,” IEEE Transactions on Knowledge and Data Engineering, vol. 23,

pp. 1079–1089, July 2011. 3, 31

43

REFERENCES

[16] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for multi-

label classification,” in Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pp. 254–269, Springer, 2009. 3, 31

[17] G. Madjarov, D. Gjorgjevikj, and S. Džeroski, “Two stage architecture for multi-

label learning,” Pattern Recognition, vol. 45, no. 3, pp. 1019–1034, 2012. 3, 31

[18] M. S. Sorower, “A literature survey on algorithms for multi-label learning,” Oregon

State University, Corvallis, vol. 18, pp. 1–25, 2010. 3

[19] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,” Data

mining and knowledge discovery handbook, pp. 667–685, 2009. 3

[20] A. Romero, P. Arbeláez, L. Van Gool, and R. Timofte, “Smit: Stochastic multi-

label image-to-image translation,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision Workshops, pp. 0–0, 2019. 4, 10

[21] Z. Cao, R. Wang, X. Wang, Z. Liu, and X. Zhu, “Improving human pose

estimation with self-attention generative adversarial networks,” in 2019 IEEE

international conference on Multimedia & Expo Workshops (ICMEW), pp. 567–

572, IEEE, 2019. 5

[22] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim,

“Data synthesis based on generative adversarial networks,” arXiv preprint

arXiv:1806.03384, 2018. 5

[23] L. Xu and K. Veeramachaneni, “Synthesizing tabular data using generative

adversarial networks,” arXiv preprint arXiv:1811.11264, 2018. 5

[24] G. Y. S. Z. P. N. H. L. H. C. Zhang, Yabin and C. Li, “Partial label learning via

generative adversarial nets,” pp. pp. 1674–1681, 2020. 5, 10, 18

[25] Y. Yan and Y. Guo, “Adversarial partial multi-label learning with label

disambiguation,” in AAAI, pp. 10568–10576, 2021. 5, 10, 18

44

REFERENCES

[26] Z. Cao, R. Wang, X. Wang, Z. Liu, and X. Zhu, “Improving human pose

estimation with self-attention generative adversarial networks,” in 2019 IEEE

international conference on Multimedia & Expo Workshops (ICMEW), pp. 567–

572, IEEE, 2019. 5

[27] H. Inoue, “Data augmentation by pairing samples for images classification,” arXiv

preprint arXiv:1801.02929, 2018. 6

[28] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

synthetic minority over-sampling technique,” Journal of artificial intelligence

research, vol. 16, pp. 321–357, 2002. 6

[29] F. Maayan, K. Eyal, G. Jacob, and G. Hayit, “Gan-based data augmentation for

improved liver lesion classification,” arXiv preprint, 2018. 6

[30] C. Little, M. Elliot, R. Allmendinger, and S. S. Samani, “Generative adversarial

networks for synthetic data generation: A comparative study,” arXiv preprint

arXiv:2112.01925, 2021. 6

[31] S. Dendamrongvit and M. Kubat, “Undersampling approach for imbalanced

training sets and induction from multi-label text-categorization domains,” in

Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 40–52,

Springer, 2009. 7

[32] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv

preprint arXiv:1411.1784, 2014. 10

[33] G. Zhang, Y. Pan, and L. Zhang, “Semi-supervised learning with gan for

automatic defect detection from images,” Automation in Construction, vol. 128,

p. 103764, 2021. 10

[34] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and

X. Chen, “Improved techniques for training gans,” Advances in neural information

processing systems, vol. 29, 2016. 10

45

REFERENCES

[35] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning

with deep convolutional generative adversarial networks,” arXiv preprint

arXiv:1511.06434, 2015. 10

[36] Y. Pang, J. Lin, T. Qin, and Z. Chen, “Image-to-image translation: Methods and

applications,” IEEE Transactions on Multimedia, 2021. 10

[37] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for

generative adversarial networks,” in Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pp. 4401–4410, 2019. 10

[38] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative

adversarial networks,” in International conference on machine learning, pp. 7354–

7363, PMLR, 2019. 10

46

	Declaration
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Overview
	1.2 Dissertation Outline

	2 Related Work
	2.1 Generative Adversarial Networks
	2.2 Data Augmentation
	2.3 Imbalance in Multilabel Classification

	3 Deep Convolutional Generative Adversarial Networks (DCGAN)
	3.1 Improved Techniques for Training GANs
	3.2 DCGAN (Deep Convolutional Generative Adversarial Network)
	3.2.1 StyleGAN
	3.2.2 SMIT (Stochastic Multi-Label Image-to-Image Translation)

	3.3 SAGAN (Self Attention Generative Adversarial Network)
	3.4 Partial Label Learning
	3.4.1 PLLGAN (Partial Label Learning via GANs)
	3.4.2 PMLGAN (Partial Multi-Label Learning via GANs)

	4 MLGAN
	4.1 Measuring Imbalance
	4.2 Generative Adversarial Network (GAN) Architecture
	4.3 Proposed Approach

	5 Experimental Setup and Results
	5.1 Experimental Setup
	5.1.1 Datasets
	5.1.2 Classifiers
	5.1.3 Evaluation Metrics

	5.2 Experimental Results
	5.2.1 Effect of K in MLSMOTE

	6 Conclusion and Future Works
	References

